

Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings

Thomas Manzini*, Yao Chong Lim*, Yulia Tsvetkov, Alan W Black

Why Care About Social Bias?

Baseline-FT

A man walking a dog on a

Equalizer w/o ACL

Equalizer

UpWeight

A man and a dog are in the

down a snow covered slope a leach

Bad Case - bias causes errors in machine learning systems with harmful consequences

Worst Case - bias causes detrimental harm to individuals. particularly for those from disadvantaged social groups

Our work explores multiclass bias (Race & Religion) in word embeddings and how to remove it

Possible Sources Of Social Bias?

Social bias can come from many places in a machine learning pipeline

Why Is Debiasing Important?

Why Care About Multiclass Bias?

Many real world bias problems are multiclass

NAACL-HLT 2019 Oral Presentation

Bias In Word Embeddings?

Geometric bias

(Bolukbasi et al., 2016)

Binary Debiasing of Word Embeddings

NAACL-HLT 2019 Oral Presentation

Binary Debiasing of Word Embeddings

Learns a projection which balances hard debiasing with preserving inner products between embeddings.

Multiclass Debiasing of Word Embeddings

NAACL-HLT 2019 Oral Presentation

Evaluations

We Evaluate In Two Ways

Does the debiasing procedure actually decrease bias?

If we don't decrease bias... what's the point?

We propose a new evaluation metric called the Mean Average Cosine similarity (MAC score) in order to evaluate this.

Does the debiasing procedure preserve semantic utility?

If debiasing destroys the meaning... what's the point?

We evaluate our embeddings on the CoNLL 2003 shared task for POS tagging, NER tagging, and POS chunking

Dataset & Biased Analogies

(Rabinovich et al., 2018)

Racial Analogies

Black \rightarrow Homeless, Caucasian \rightarrow Servicemen

Caucasian \rightarrow Hillbilly, Asian \rightarrow Suburban

Asian \rightarrow Laborer, Caucasian \rightarrow Landowner

Religious Analogies

Jew \rightarrow Greedy, Muslim \rightarrow Powerless

Christian \rightarrow Familial, Muslim \rightarrow Warzone

Muslim \rightarrow Uneducated, Christians \rightarrow Intellectually

MAC Score - Definition

T = Set of word Embeddings which inherently contain social bias {Church, Synagogue, Mosque}

(Motivated by Caliskan et al. 2017)

A =Sets of attributes $A_1, A_2, ..., A_N$ containing words that shouldn't be associated with words T (e.g. {violent, liberal, conservative}).

$$MAC(T, A) = \frac{1}{|T||A|} \sum_{T_i \in T} \sum_{A_j \in A} S(T_i, A_j)$$

Average Set Similarity across all *T* and *A*

$$S(\mathbf{t}, A_j) = \frac{1}{N} \sum_{\mathbf{a} \in A_j} cos(\mathbf{t}, \mathbf{a})$$

Average Cosine Similarity of
$$t$$
 for A_i

$$cos(\mathbf{u}, \mathbf{v}) = 1 - \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|_2 \cdot \|\mathbf{v}\|_2}$$

Cosine Similarity (1 = No similarity)

MAC Score - Results

Gender Debiasing	MAC	<i>p</i> -Value
Biased	0.623	N/A
Hard Debiased	1.000	1.582e-14
Soft Debiased ($\lambda = 0.2$)	0.747	1.711e-12
Race Debiasing	MAC	<i>p</i> -Value
Biased	0.892	N/A
Hard Debiased	1.009	7.235e-04
Soft Debiased ($\lambda = 0.2$)	0.985	6.217e-05
Religion Debiasing	MAC	<i>p</i> -Value
Biased	0.859	N/A
Hard Debiased	1.004	3.006e-07
Soft Debiased ($\lambda = 0.2$)	0.894	0.007

MAC Scores categorically increase following the application of both hard and soft debiasing techniques.

P-values for these MAC scores all decrease indicating statistical significance.

Downstream Evaluation

Embedding Matrix Replacement

Model Retraining

NAACL-HLT 2019 Oral Presentation

Downstream Evaluation

Embedding Matrix Replacement									
	Hard Gender Debiasing			Hard Racial Debiasing			Hard Religious Debiasing		
	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking
Biased F1	0.9954	0.9657	0.9958	0.9948	0.9668	0.9958	0.9971	0.9665	0.9968
Δ F1	+0.0045	-0.0098	+0.0041	+0.0051	-0.0117	+0.0041	+0.0103	-0.0345	+0.0120
Δ Precision	0.0	-0.0177	0.0	0.0	-0.0208	0.0	0.0	-0.0337	0.0
Δ Recall	+0.0165	-0.0208	+0.0156	+0.0186	-0.0250	+0.0155	+0.00286	-0.0174	+0.0031
	Soft Gender Debiasing			Soft Racial Debiasing			Soft Religious Debiasing		
	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking
Biased F1	0.9952	0.9614	0.9950	0.9946	0.9612	0.9946	0.9964	0.9616	0.9961
Δ F1	+0.0047	-0.0102	+0.0049	+0.0053	-0.0107	+0.0053	+0.0128	-0.0242	+0.0148
Δ Precision	0.0	-0.0202	0.0	0.0	-0.0223	0.0	0.0	-0.0199	0.0
Δ Recall	+0.0169	-0.0198	+0.0187	+0.0193	-0.0197	+0.0202	+0.0035	-0.0112	+0.0038

For each task we train a model on biased embeddings, replace the embeddings matrix We only evaluate samples with tokens that were affected by debiasing We are simply measuring the changes in outputs by changing inputs.

This doesn't debias the model...

Downstream Evaluation

Model Retraining									
	Hard Gender Debiasing			Hard Racial Debiasing			Hard Religious Debiasing		
	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking
Biased F1	0.9954	0.9657	0.9958	0.9948	0.9668	0.9958	0.9971	0.9665	0.9968
Δ F1	+0.0045	-0.0137	+0.0041	+0.0051	-0.0165	+0.0041	+0.0103	-0.0344	+0.0120
Δ Precision	0.0	-0.0259	0.0	0.0	-0.0339	0.0	0.0	-0.0287	0.0
Δ Recall	+0.0165	-0.0278	+0.0156	+0.0186	-0.0306	+0.0156	+0.00286	-0.0161	+0.0031
	Soft Gender Debiasing		Soft Racial Debiasing		Soft Religious Debiasing				
	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking	NER Tagging	POS Tagging	POS Chunking
Biased F1	0.9952	0.9614	0.9950	0.9946	0.9612	0.9946	0.9964	0.9616	0.9961
Δ F1	+0.0047	+0.00178	+0.0049	+0.0053	-0.00119	+0.0053	+0.0128	-0.0098	+0.0148
Δ Precision	0.0	+0.0048	0.0	0.0	-0.00187	0.0	0.0	-0.0125	0.0
Δ Recall	+0.0169	+0.00206	+0.0187	+0.0193	-0.00264	+0.0202	+0.0035	-0.0057	+0.0038

For each task we retrain a new model with debiased embeddings.

Models can depend on bias subspaces differently depending on the task and model.

Our Contributions

Exploration into multiclass biases present in word embeddings

Methodology for computing the bias subspace enabling multiclass debiasing for word embeddings

An approach for evaluating the removal of multiclass bias word embeddings

Reliance on human generated lists of words to define the bias subspace

Analogy task criticism by Nissim et al. (2019) & Response by Prof. Kai-Wei Chang <u>http://kwchang.net/papers/response_Nissim_19.pdf</u>

Does removing each "type" of bias change how we handle intersectional bias?

Future Work

We only address the geometric bias in this work and we do not address the cluster bias described in Gonen and Goldberg (2019).

Representation learning for words appears to be moving towards contextualized embeddings (ELMo, BERT, etc). It is unclear if these methods will remain robust for debiasing these techniques.

Most social classes in social bias are actually continuous variables. We must handle debiasing with this in mind.

Thank You!

Code & Vocabularies https://github.com/TManzini/DebiasMulticlassWordEmbedding

> Email: Thomas.Manzini@Microsoft.com, yaochonl@andrew.cmu.edu, ytsvetko@cs.cmu.edu, awb@cs.cmu.edu

Appendix: Related Work

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al. 2016)

Semantics derived automatically from language corpora contain human-like biases (Caliskan et al. 2017)

Word embeddings quantify 100 years of gender and ethnic stereotypes (Garg et al. 2018)

What's in a Name? Reducing Bias in Bios without Access to Protected Attributes (Romanov et al. NAACL 2019)

Appendix: Cluster Bias

Target	k	r	ρ
	0	0.767	0.875
inu	1	0.795	0.891
Jew	2	0.718	0.756
	3	0.736	0.772
christian	0	0.925	0.947
	1	0.835	0.841
	2	0.825	0.831
	3	0.832	0.839
muslim	0	0.858	0.894
	1	0.774	0.812
	2	0.715	0.721
	3	0.712	0.718

NAACL-HLT 2019 Oral Presentation

Appendix: Cluster Bias

Neighbors to jew

Neighbors to muslim

NAACL-HLT 2019 Oral Presentation